The main recommendation algorithms available through the Recommendation API are categorized by type and methodology. Each algorithm can be called via its dedicated endpoint.
Algorithm | Definition | Endpoint | Abbreviation |
|---|---|---|---|
Chef | An automated recommendation algorithm that automatically brings the best-mixed strategy combination by testing most popular items, top sellers, user-based, highest discounted, new arrivals, and trending algorithms for better conversion rates. | /v2/chef | chef |
Complementary Products | Recommends complementary products based on similarity and price proximity. Helps users discover related products based on a collaborative filtering approach. | /v2/complementary | cp |
Highest Discounted Products | Recommends items by sorting items based on their discount ratio. Recommends products ordered from the highest discount to the lowest. The discount ratio is calculated separately for each currency type. | /v2/highest-discounted | hdop |
Last Purchased Together | Recommends products frequently purchased together based on the user's most recent purchase history. Helps users discover items based on their previous purchase patterns. | /v2/last-purchased-together | lpt |
Manual Merchandising | Brings details of manually specified products. Only in-stock products are returned. Enables showcasing of specific products or content from a curated list specified in campaign configuration. | /v2/manual-merchandising | mm |
Mixed Strategy | Creates a customized mixed recommendation strategy using different recommendation types. Allows the use of multiple algorithms for each slot of the Recommendation Widget in a single request. | /v2/mixed | mixed |
Most Popular Items | Recommends items by analyzing the most popular products by page views. Generates recommendations based on page view counts during the last 30 days. Works best on main, category, and product pages. | /v2/most-popular | mvop |
Most Valuable Products | Recommends items by their contribution to total revenue. Recommends products that generate more revenue across your site based on contribution to revenue and revenue per visit. | /v2/most-valuable | mvpop |
New Arrivals | Brings products newly added to the website. Recommends products in order of their publish date. For the Publisher vertical, the updated time is used for newly released articles. | /v2/new-arrivals | naop |
Purchased Together | Recommends complementary products purchased by other users alongside the user's purchases. Generates recommendations based on products purchased in the same sessions and locale during the past 30 days, ordered by purchase frequency. | /v2/purchased-together | btb |
Recently Viewed | Allows users to create campaigns highlighting recent product views. Enables users to re-engage with products based on their historical behavior. Returns only the user's recently viewed products. | /v2/recently-viewed | rvp |
Substitute Products | Recommends similar products using a collaborative filtering approach. Considers product similarity and price proximity to help with product discovery on product and cart pages. | /v2/substitute | sp |
Top Sellers | Recommends products in order of their purchase counts for the last 30 days. Works best on the main page. Falls back to your most purchased category. | /v2/top-sellers | mpop |
Trending Products | Recommends items using a scoring system. Identifies this week's trending items compared to those in the previous week by scoring items based on weekly view and purchase information. | /v2/trending | tpop |
User Based | Recommends items by finding similar users to the current user. Generates recommendations based on user behavior and product popularity. Uses a user-product-rating matrix based on visits, purchases, and add-to-carts within the last 30 days. | /v2/user-based | ub |
User Engagement | Recommends products by analyzing the most recent interactions of the current user. Generates personalized recommendations informed by real-time user behaviors and evolving preferences using deep learning-based transformer model. | /v2/user-engagement | ue |
Viewed Together | Recommends items by finding similar products to those visited by the user. Generates recommendations based on products visited in the same sessions and in the same locale within the past 30 days, ordered by visit frequency. | /v2/viewed-together | vtv |