Algorithm Descriptions

Prev Next

The main recommendation algorithms available through the Recommendation API are categorized by type and methodology. Each algorithm can be called via its dedicated endpoint.

Algorithm

Definition

Endpoint

Abbreviation

Chef

An automated recommendation algorithm that automatically brings the best-mixed strategy combination by testing most popular items, top sellers, user-based, highest discounted, new arrivals, and trending algorithms for better conversion rates.

/v2/chef

chef

Complementary Products

Recommends complementary products based on similarity and price proximity. Helps users discover related products based on a collaborative filtering approach.

/v2/complementary

cp

Highest Discounted Products

Recommends items by sorting items based on their discount ratio. Recommends products ordered from the highest discount to the lowest. The discount ratio is calculated separately for each currency type.

/v2/highest-discounted

hdop

Last Purchased Together

Recommends products frequently purchased together based on the user's most recent purchase history. Helps users discover items based on their previous purchase patterns.

/v2/last-purchased-together

lpt

Manual Merchandising

Brings details of manually specified products. Only in-stock products are returned. Enables showcasing of specific products or content from a curated list specified in campaign configuration.

/v2/manual-merchandising

mm

Mixed Strategy

Creates a customized mixed recommendation strategy using different recommendation types. Allows the use of multiple algorithms for each slot of the Recommendation Widget in a single request.

/v2/mixed

mixed

Most Popular Items

Recommends items by analyzing the most popular products by page views. Generates recommendations based on page view counts during the last 30 days. Works best on main, category, and product pages.

/v2/most-popular

mvop

Most Valuable Products

Recommends items by their contribution to total revenue. Recommends products that generate more revenue across your site based on contribution to revenue and revenue per visit.

/v2/most-valuable

mvpop

New Arrivals

Brings products newly added to the website. Recommends products in order of their publish date. For the Publisher vertical, the updated time is used for newly released articles.

/v2/new-arrivals

naop

Purchased Together

Recommends complementary products purchased by other users alongside the user's purchases. Generates recommendations based on products purchased in the same sessions and locale during the past 30 days, ordered by purchase frequency.

/v2/purchased-together

btb

Recently Viewed

Allows users to create campaigns highlighting recent product views. Enables users to re-engage with products based on their historical behavior. Returns only the user's recently viewed products.

/v2/recently-viewed

rvp

Substitute Products

Recommends similar products using a collaborative filtering approach. Considers product similarity and price proximity to help with product discovery on product and cart pages.

/v2/substitute

sp

Top Sellers

Recommends products in order of their purchase counts for the last 30 days. Works best on the main page. Falls back to your most purchased category.

/v2/top-sellers

mpop

Trending Products

Recommends items using a scoring system. Identifies this week's trending items compared to those in the previous week by scoring items based on weekly view and purchase information.

/v2/trending

tpop

User Based

Recommends items by finding similar users to the current user. Generates recommendations based on user behavior and product popularity. Uses a user-product-rating matrix based on visits, purchases, and add-to-carts within the last 30 days.

/v2/user-based

ub

User Engagement

Recommends products by analyzing the most recent interactions of the current user. Generates personalized recommendations informed by real-time user behaviors and evolving preferences using deep learning-based transformer model.

/v2/user-engagement

ue

Viewed Together

Recommends items by finding similar products to those visited by the user. Generates recommendations based on products visited in the same sessions and in the same locale within the past 30 days, ordered by visit frequency.

/v2/viewed-together

vtv